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Figure 1. Taking the first image on the left as an example, what do you see at your first glance? A painting of a path through a forest (zoom
in for a detailed look), or a human face (zoom out for a more global view)? Based on the off-the-shelf text-to-image diffusion model,
we contribute a plug-and-play method that naturally dissolves a reference image (shown in the bottom-right corner) into arbitrary scenes
described by a text prompt, providing a free lunch for synthesizing optical illusion hidden pictures using diffusion model. Better zoom in.

Abstract

Optical illusion hidden picture is an interesting visual per-
ceptual phenomenon where an image is cleverly integrated
into another picture. Established on the off-the-shelf text-
to-image (T2I) diffusion model, we propose a novel text-
guided image-to-image (I2I) translation framework dubbed
as Phase-Transferred Diffusion Model (PTDiffusion) for
hidden art syntheses, which harmoniously embeds an in-
put reference image into arbitrary scenes described by the
text prompts. At the heart of our method is a plug-and-play
phase transfer mechanism that dynamically and progres-
sively transplants diffusion features’ phase spectrum from
the denoising process to reconstruct the reference image
into the one to sample the generated illusion image, realiz-
ing deep fusion of the reference structural information and
the textual semantic information. Furthermore, we propose
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asynchronous phase transfer to enable flexible control over
the degree of hidden content discernability. Our method
bypasses any model training and fine-tuning process, all
while substantially outperforming related methods in im-
age quality, text fidelity, visual discernibility, and contextual
naturalness for illusion picture synthesis, as demonstrated
by extensive qualitative and quantitative experiments. Our
project is publically available at this web page.

1. Introduction
As a special form of artistic design, optical illusion hidden
picture exploits human visual system’s tendency to perceive
patterns, shapes, and colors to conceal a secondary image
within the intricate details of a primary image. It has wide
applications across various fields, such as enhancing aes-
thetic appeal in fashion design, creating amusing content in
digital entertainment, attracting attention in marketing and
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advertising, improving observation skills in children educa-
tion, and visual discernment diagnosis in medical treatment.

Computationally generating optical illusions is a long-
standing challenging task in computer vision and computer
graphics. Early methods focus on exploiting how human
brains process visual stimuli to generate elementary visual
illusions, such as geometric illusion [5], color illusion [13],
motion illusion [7], and viewing distance illusion [24].

More relevant to image processing, Chu et al. [2] pro-
pose a re-texturing pipeline to synthesize camouflage im-
ages, i.e., conceal a foreground image patch into the textures
of a background image. Zhang et al. [38] design a series
of optimization functions to synthesize camouflage images
from a style transfer perspective [9]. Lamdouar et al. [18]
propose to employ StyleGAN-based generative model [16]
to synthesize camouflage images in a data-driven manner.

Since diffusion models [15] revolutionizing the field of
generative AI, tremendous attention has been focused on
various diffusion-based AIGC applications, among which
there are also explorations in illusion picture synthesis. For
example, DiffQRCoder [19] and Text2QR [36] leverage
ControlNet [37] to integrate scannable QR codes into aes-
thetic pictures. Diffusion Illusions [1] employs T2I diffu-
sion model and score distillation sampling [27, 35] to syn-
thesize images with overlay illusions. Visual Anagrams
[10] merges noises estimated from different views to gener-
ate multi-view optical illusions, realizing image appearance
change under a certain pixel permutation such as image flip,
image rotation, or jigsaw rearrangement.

In this paper, we pioneer generating optical illusion hid-
den pictures (we will use “illusion pictures” as an abbrevia-
tion in the following) from the perspective of text-guided I2I
translation, i.e., translating an input reference image into an
illusion picture that complies with the text prompt in seman-
tic content while manifesting structural visual cues of the
reference image. Our goal differs from the aforementioned
optical illusion methods in three aspects: (i) different from
camouflage image generation [2, 18, 38] that overempha-
sizes content concealment, we pursue visual discernibility
of both target semantic content and hidden visual cues; (ii)
unlike synthesizing camouflage image that conceals content
into the texture of an existing background image, we expect
generating background elements as per the text description;
(iii) we do not aim at producing transformation-based (flip,
rotation, etc.) optical illusions like Visual Anagrams [10],
but rather focus on seamlessly dissolving a reference image
into arbitrary scenes. By contrast, our goal is more method-
ologically relevant to text-guided I2I [21, 25, 34] and con-
trollable T2I [22, 37, 39] methods. However, since these
methods over-bind I2I correlation by explicitly enforcing
feature consistency [21, 25, 34] or directly training a control
network [22, 37], they are less suitable for I2I translation
with large semantic deviation (i.e., suffer from structure-

semantic conflict issue), and thus tend to generate contex-
tually unnatural results when applied to synthesize illusion
pictures. This enlightens us to explore a disentangled image
structure representation to relax I2I correlation binding, as
well as an appropriate manner to deeply fuse image struc-
ture and semantic information along the sampling process.

Drawing inspiration from digital signal processing that
the phase spectrum of an image determines its structural
composition, we propose to leverage diffusion features’
phase to disentangle image structure and accordingly pro-
pose PTDiffusion, a concise and elegant method based on
T2I diffusion model that realizes smooth blending of the
reference image’s structural cues and the text-indicated se-
mantic content in the Latent Diffusion Model (LDM) [29]
feature space, producing visually appealing illusion pic-
tures in a plug-and-play manner. Specifically, we employ
DDIM inversion [32] to construct guidance features along
a reference image reconstruction trajectory, and progres-
sively transplant the phase of the guidance features into
the corresponding features along the text-guided sampling
trajectory, such that structural cues of the input reference
image are smoothly penetrated into the sampling process
of the target image, yielding generation results exhibiting
harmonious illusion effects. Besides, we further propose
asynchronous phase transfer to flexibly control structural
penetration strength, endowing our method with control-
lability to hidden content discernability. Our method is
free from training, fine-tuning, and online optimization, all
while demonstrating noticeable strengths in illusion picture
synthesis. The contributions are summarized as follows:
• We pioneer generating optical illusion hidden pictures

from the perspective of text-guided I2I translation.
• We propose a concise and elegant method that realizes

deep fusion of image structure and text semantics via dy-
namic phase manipulation in the LDM feature space, pro-
ducing contextually harmonious illusion pictures.

• We propose asynchronous phase transfer to enable flexi-
ble control over the degree of hidden image discernibility.

• Our method dispenses with any training and optimization
process, providing a free lunch for synthesizing illusion
pictures using off-the-shelf T2I diffusion model.

2. Related work
Text-guided image generation. Since the advent of DDPM
[15], diffusion model has soon surpassed GAN [11] on im-
age synthesis [3] and has subsequently been accelerated
by DDIM [32] and extended to conditional image genera-
tion paradigm by Palette [30]. After large-scale T2I diffu-
sion models [23, 28, 31] remarkably boosting AIGC indus-
try, LDM [29] contributes a classical T2I framework with
dramatically lowered computational overhead by transfer-
ring DDPM from high-dimensional pixel space into low-
dimensional feature space, which inspires subsequent T2I
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Figure 2. Overview of PTDiffusion. Built upon the pre-trained Latent Diffusion Model (LDM), PTDiffusion is composed of three diffusion
trajectories. The inversion trajectory inverts the reference image into the LDM Gaussian noise space. The reconstruction trajectory recovers
the reference image from the inverted noise embedding. The sampling trajectory samples the final illusion image from random noise guided
by the text prompt. The reconstruction and sampling trajectory are bridged by our proposed phase transfer module, which dynamically
transplants diffusion features’ phase spectrum to smoothly blend source image structure with textual semantics in the LDM feature space.

models [6, 26] scaling up to larger capacity. To add control-
lability to T2I synthesis, ControlNet [37] and T2I-Adapter
[22] train a control network of the LDM conditioned on cer-
tain image priors (edges, depth maps, etc.), implicitly real-
izing reference-image-based structural control to the gener-
ated images. However, the over-constraining on object con-
tours and shapes of these methods limit their applicability to
synthesizing illusion pictures which emphasize harmonious
blending of source image structure and target semantics.
Text-guided I2I translation. Our method closely relates to
text-guided I2I translation. SDEdit [20] translates a source
image by noising it to an intermediate step followed by
text-guided denoising. Attention-modulation-based meth-
ods such as Null-text inversion [21] and pix2pix-zero [25]
correlate source and generated image by enforcing con-
sistency of cross-attention maps [12]. Textual-inversion-
based methods like Imagic [17] and Prompt Tuning Inver-
sion [4] preserve source image visual information via learn-
able text embedding. Optimization-free methods such as
PAP [34] and FBSDiff [8] maintain source image structure
through dynamic feature modulation during the reverse de-
noising process. For illusion picture synthesis, however,
these methods struggle to produce contextually natural re-
sults with both faithful textual semantics and discernable
hidden structure due to the overly bound I2I correlation.

3. Phase-Transferred Diffusion Model
3.1. Overall architecture
As Fig. 2 shows, our model builds on the off-the-self LDM
[29], and is comprised of an inversion trajectory (z0 →
zTinv ), a reconstruction trajectory (zTinv = ẑT → ẑ0 ≈ z0),
and a sampling trajectory (z̃T → z̃0). Based on the initial
feature z0 = E(x) extracted from the reference image x

by the LDM encoder E, the inversion trajectory adopts a
Tinv-step DDIM inversion [32] to project z0 into a Gaus-
sian noise zTinv

conditioned on the null-text embedding v∅:

zt+1 =
√
ᾱt+1fθ(zt, t, v∅) +

√
1− ᾱt+1ϵθ(zt, t, v∅), (1)

fθ(zt, t, v∅) = (zt −
√
1− ᾱtϵθ(zt, t, v∅))/

√
ᾱt, (2)

where {ᾱt} are pre-defined DDPM schedule parameters
[15], ϵθ is the LDM denoising U-Net, fθ(zt, t, v∅) is an ap-
proximation of z0 estimated from zt. The reconstruction
trajectory applies a T -step DDIM sampling to reconstruct
ẑ0 ≈ z0 from the inverted Gaussian noise ẑT = zTinv

, con-
ditioned on the same null-text embedding v∅:s

ẑt−1 =
√
ᾱt−1fθ(ẑt, t, v∅) +

√
1− ᾱt−1ϵθ(ẑt, t, v∅), (3)

where fθ(ẑt, t, v∅) is similar to Eq. (2). The sampling tra-
jectory applies a T -step DDIM sampling to generate z̃0
from a randomly initialized Gaussian noise z̃T ∼ N (0, I)
conditioned on the text embedding v of the target text
prompt. To amplify the influence of text guidance, we
exploit classifier-free guidance technique [14] by linearly
combining the conditional (target text) and unconditional
(null text) noise estimation with a guidance scale ω:

z̃t−1 =
√
ᾱt−1fθ(z̃t, t, v, v∅) +

√
1− ᾱt−1ϵθ(z̃t, t, v, v∅),

(4)
fθ(z̃t, t, v, v∅) = (z̃t −

√
1− ᾱtϵθ(z̃t, t, v, v∅))/

√
ᾱt, (5)

ϵθ(z̃t, t, v, v∅) = ω ·ϵθ(z̃t, t, v)+(1−ω) ·ϵθ(z̃t, t, v∅). (6)

To dissolve x into x̃, we propose phase transfer module
(PTM) which dynamically blends the structural information
of ẑt into z̃t along the two parallel denoising trajectories.
We apply per-step structural penetration realized by PTM
only in the early part of the sampling trajectory (which we
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Figure 3. Illustration of the phase transfer module (PTM). To
transfer the phase of ẑt into z̃t, we apply 2D FFT to decompose
their magnitude M̂t, M̃t and phase P̂t, P̃t, linearly fuse their phase
with a blending coefficient bt, and recombine the fused phase with
M̃t. Finally, the manipulated FFT feature is converted back to the
spatial domain via 2D IFFT to form the phase-transferred z̃t.

call phase transfer stage) while leaving the rear part (which
we call refining stage) totally unconstrained to guarantee
high-quality image synthesis. The two stages are separated
by the time step λT , where λ denotes the proportion of the
refining stage to the entire sampling trajectory. The final
sampling result z̃0 is transformed to the generated illusion
picture via the LDM decoder D, i.e., x̃ = D(z̃0).

3.2. Phase transfer module
As the kernel ingredient of our method, the PTM is illus-
trated in Fig. 3. To transfer the phase of ẑt into the corre-
sponding feature z̃t, we firstly utilize 2D Fast Fourier Trans-
form (FFT) to extract their magnitude and phase:

R̂t + iÎt = FFT (ẑt), R̃t + iĨt = FFT (z̃t), (7)

M̂t =

√
R̂2

t + Î2t , M̃t =

√
R̃2

t + Ĩ2t , (8)

P̂t = arctan(Ît/R̂t), P̃t = arctan(Ĩt/R̃t), (9)

where i denotes the imaginary unit, i.e., i2 = −1. R̂t

and R̃t are the real part of the 2D FFT spectrum of ẑt and
z̃t respectively, Ît and Ĩt are the corresponding imaginary
part. M̂t and M̃t are the magnitude spectrum of ẑt and z̃t
respectively, P̂t and P̃t are the corresponding phase spec-
trum. Then, the extracted phase spectrum P̂t and P̃t are
linearly blended with a time-dependent blending coefficient
bt, yielding the fused phase spectrum P fuse

t as follows:

P fuse
t = bt × P̂t + (1− bt)× P̃t. (10)

The fused phase is recombined with the original magnitude
M̃t before transforming back to the spatial domain with 2D
IFFT, finally resulting in the structurally penetrated z̃t:

z̃t = IFFT (M̃t × (cos(P fuse
t ) + i× sin(P fuse

t ))). (11)

Since the structural information of the guidance features
{ẑt} is becoming increasingly prominent as the denoising
process proceeds, direct phase transfer in the later denoising
steps is prone to harm contextual naturalness of the final re-
sult due to excessive structural penetration. Thus, we design

reference t = 90 t = 70 t = 50 t = 30 t = 10

Figure 4. Visualization of the guidance features {ẑt} along the
100-step reconstruction trajectory. The structural information of
ẑt becomes increasingly distinct as the denoising proceeds.
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Figure 5. Illustration of the asynchronous phase transfer which
transfers phase across diffusion features at different time steps.

a decayed phase blending schedule which gradually decays
the blending coefficient {bt} in the later denoising steps of
the phase transfer stage, which we formulate as below:

bt =


1, if τT ≤ t ≤ T

1−
√

τT − t

τT − λT
, if λT ≤ t < τT

(12)

where λ ≤ τ ≤ 1. It means that we apply direct phase re-
placement in the early part of the phase transfer stage where
the guidance features ẑt are structurally less distinct, while
gradually decaying phase transfer intensity in the later sec-
tion of the phase transfer stage as ẑt becomes structurally
more and more prominent. By decaying phase transfer in-
tensity, the visual quality and contextual naturalness of the
generated illusion picture can be noticeably improved.

3.3. Asynchronous phase transfer
Since sufficient steps in the refining stage is of crucial
importance to ensure image quality, we fix λ, namely
the length of the phase transfer stage, and propose asyn-
chronous phase transfer to realize controllable structural
penetration strength within the fixed-length phase transfer
stage. As Fig. 4 displays, later ẑt in the reconstruction tra-
jectory is structurally more prominent than its earlier coun-
terpart. This inspires us to transfer phase from later ẑt into
earlier z̃t to enhance structural penetration, namely the so-
called asynchronous phase transfer as illustrated in Fig. 5.

To this end, we design a concise and elegant solution that
implements asynchronous phase transfer based on simple
synchronous denoising, i.e., parallel denoising along the re-
construction and sampling trajectory. Specifically, given an
async distance d, we firstly leverage ẑt to estimate its future
counterpart ẑt−d that is d steps ahead of itself in the recon-
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Algorithm 1 Complete algorithm of PTDiffusion

Input: Reference image x, target text v, time steps T and
Tinv , blending coefficients {bt}, async distance d.

Output: The generated illusion picture x̃.
1: Extract the initial latent feature z0 = E(x)
2: for t = 0 to Tinv − 1 do
3: Compute zt+1 from zt via Eq. (1)
4: end for{Inversion trajectory}
5: Initialize ẑT = zTinv , z̃T ∼ N (0, I)
6: for t = T to λT do
7: Compute ẑt−1 from ẑt via Eq. (3)
8: Compute z̃t−1 from z̃t via Eq. (4)
9: z̃t−1 = APTM(ẑt−1, z̃t−1, bt−1, d) as Eq. (13)

10: end for{Phase transfer stage}
11: for t = λT − 1 to 1 do
12: Compute z̃t−1 from z̃t via Eq. (4)
13: end for{Refine stage}
14: Compute the illusion picture x̃ = D(z̃0)

struction trajectory, then transfer the phase spectrum of the
estimated ẑt−d into z̃t. Let APTM denote the asynchronous
phase transfer module, we formulate it as follows:

z̃t = APTM(ẑt, z̃t, bt, d) = PTM(ẑ∗t−d, z̃t, bt), (13)

where ẑ∗t−d is a pre-estimation of ẑt−d at time step t:

ẑ∗t−d =
√
ᾱt−dfθ(ẑt, t, v∅) +

√
1− ᾱt−dϵθ(ẑt, t, v∅).

(14)
Similar to Eq. (2), fθ(ẑt, t, v∅) denotes an approximate esti-
mation of ẑ0 predicted by the current ẑt. Note that the async
distance d in Eq. (13) can also be a negative value to allow
for weakened structural penetration strength.

3.4. Implementation details

We use pre-trained SD v1.5 as the backbone diffusion
model and set the classifier-free guidance scale ω=7.5. To
ensure inversion accuracy, we apply 1000-step DDIM in-
version for the inversion trajectory, i.e., Tinv=1000. We ap-
ply 100-step DDIM sampling for both the reconstruction
and sampling trajectory to save inference time, i.e., T=100.
During sampling, we allocate 60% denoising steps to the
phase transfer stage and the remaining 40% steps to the re-
fining stage, i.e., λ=0.4. We perform direct phase replace-
ment in the early 2/3 section of the phase transfer stage
while performing decayed phase transfer in the later 1/3
section by setting τ=0.6 in Eq. (12). The async distance d
in Eq. (13) is manually tunable (recommended in the range
of [-10, 10]) for flexible control over the structural pene-
tration strength, with a default value of 0. The complete
algorithm of PTDiffusion is summarized in Alg. 1.

4. Experiment

4.1. Qualitative results

Example results of our PTDiffusion in generating illusion
pictures are displayed in Fig. 6. Our method harmoniously
dissolves a reference image into arbitrary scenes described
by a text prompt. Apart from real pictures as input images,
our method also supports synthetic ones, e.g., integrating a
binary text image into the scene of the corresponding se-
mantics to generate contextual text images. It also shows
that our method is capable of producing visually appealing
illusion pictures of both realistic and artistic domain.

As demonstrated in Fig. 7, our method allows to sample
diverse illusion pictures simply by varying the initialized
Gaussian noise z̃T , while existing advanced text-guided I2I
methods [21, 25, 34] do not possess such diversity property.

In Fig. 9, we visually compare our method with related
text-guided I2I methods including Null-text inversion (NTI)
[21], Prompt-tuning inversion (PTI) [4], PAP [34], FBSD-
iff [8], and SDEdit [20], as well as controllable T2I method
represented by ControlNet [37]. We test different denois-
ing strengths for SDEdit, as well as different conditioning
modes (Canny edge and depth map) and control weights
for ControlNet for comprehensive evaluation of their per-
formance in producing illusion effects. For the remaining
methods, we present results with best illusion effect after
hyperparameter tuning. NTI produces results with weak tar-
get semantics due to the overly bound I2I correlation caused
by the attention map consistency constraint. Results of PAP
are more aligned to the target semantics but still fall short
in text fidelity. It also has the structural overbinding issue
due to directly reusing reference features during sampling.
Results of PTI and FBSDiff manifest a certain degree of
structure-semantic blending, but still underperform in con-
textual naturalness reflected by visually unpleasant artifacts.
Moreover, they suffer from issue of less prominent hidden
content, and fail to suit binary text reference images. Re-
sults of SDEdit show its difficulty in balancing structure-
semantic trade-off, i.e., large denoising strength produces
results with overwhelmed structural cues while small one is
insufficient to translation input image to the target seman-
tics. Likewise, ControlNet suffers from the same challenge
to balance source structure and target semantics when tun-
ing the control weight. By contrast, our PTDiffusion is the
only one among the compared methods that realizes harmo-
nious structure-semantic blending, producing visually ap-
pealing illusion pictures manifesting both precise textual se-
mantics and clearly discernible hidden content.

Qualitative ablation studies shown in Fig. 8 demonstrate
that both the phase transfer decay and the refining stage con-
tribute to improving contextual naturalness of the structure-
semantic blending. The absence of each of them leads to
overly penetrated reference structure, degrading visual har-

18244



reference “island” “Grand Canyon” “icebergs” “rock cave”

reference “snow mountain”
“mountain stream, 

water color”
“London Tower 

Bridge, oil painting”
“Venice, 

oil painting”

reference
“wave, 

oil painting”
“farmland, 
oil painting”

“Japanese alley, 
oil painting”

“park, 
oil painting”

“sky”

“rock”

reference

reference

reference
“ruins, 

painting”

Figure 6. Example results of PTDiffusion in generating optical illusion hidden pictures. Better viewed with zoom-in.
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Figure 7. Our method allows to sample diverse illusion pictures.

mony of the generated illusion pictures.
To verify the necessity of DDIM inversion, we have ex-

perimented with using the forward diffusion process (i.e.,
adding noise to z0 according to ẑt ∼ N (ẑt;

√
ᾱtz0, (1 −

ᾱt)I)) to build the guiding trajectory {ẑt}, which we term
the model w/o inversion. As Fig. 10 shows, our results w/
inversion are superior to that w/o inversion in both visual
quality and contextual naturalness. This could be due to
that the forward diffusion introduces randomness (Gaussian
noise) to the guidance features, yielding unstable guiding
trajectory with feature phase irregularly perturbed at each
time step, while the guiding trajectory built with DDIM in-
version is totally deterministic, providing more stable phase
spectra to be transferred along the sampling process.

Fig. 11 qualitatively demonstrates the effectiveness of
our proposed asynchronous phase transfer in controlling

“island, 
bird
view”

reference full modelw/o refining stagew/o phase decay

“cliff 
wall”

“factory, 
painting”

“royal 
palace, 

painting”

Figure 8. Ablation study about the phase transfer decay and the
refining stage of our method. Better viewed with zoom-in.

the degree of hidden image discernibility. Increasing async
distance d enhances hidden content visual prominence by
transferring phase from later guidance features into ear-
lier sampling features, while reducing d weakens hidden
content discernibility by conversely transferring phase from
earlier guidance features into later sampling features.
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Figure 9. Comparison to related text-guided I2I and controllable T2I methods on generating illusion pictures. Better to zoom in.
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Figure 10. Comparison between using inversion and using forward
diffusion (w/o inversion) to construct the guiding trajectory.

4.2. Quantitative results

For quantitative evaluations, we measure image visual qual-
ity using Aesthetic Score (↑) predicted by the pre-trained

Table 1. Quantitative evaluations of different text-guided I2I meth-
ods for illusion picture synthesis. Results of ControlNet are ob-
tained under the depth condition with 0.4 control weight. Results
of SDEdit are evaluated under 0.8 denoising strength.

Method Aesthetic Score (↑) CLIP Score (↑) LPIPS (↑)
NTI [21] 6.24 0.23 0.21
PTI [4] 6.18 0.28 0.52

PAP [34] 6.09 0.25 0.40
FBSDiff [8] 5.96 0.29 0.56
SDEdit [20] 6.10 0.29 0.49

ControlNet [37] 6.05 0.26 0.47
PTDiffusion (ours) 6.37 0.31 0.64

LAION Aesthetics Predictor V2 model, measure text fi-
delity using CLIP Score (↑), i.e., the image-text cosine sim-
ilarity. To measure model’s ability to modify source im-
age appearance, we evaluate LPIPS (↑) between the refer-
ence and the generated image pair. We test on 80 reference
images with each one paired with at least 3 text prompts.

18246



d=0

“rocks”

“stones”

d=2 d=4 d=7 d=10d=-2d=-4d=-7d =-10

Figure 11. Demonstration of the hidden content discernibility control of our method realized by varying the async distance parameter d.

Table 2. Quantitative ablation study w.r.t phase intensity decay,
refining stage, and DDIM inversion.

Model Aesthetic Score (↑) CLIP Score (↑)
w/o phase decay 6.24 0.28

w/o refining stage 5.95 0.24
w/o inversion 6.12 0.25

full model 6.37 0.31

Table 3. Quantitative study of the the impact of the async distance
d to structural penetration strength and text fidelity.

Async distance d -9 -6 -3 0 3 6 9
Structure Similarity (↑) 0.880 0.893 0.902 0.908 0.912 0.917 0.926

CLIP Score (↑) 0.309 0.311 0.305 0.307 0.301 0.298 0.293

Results reported in Tab. 1 show that our method achieves
leading performance for all the aforementioned metrics.

We quantitatively ablate the influence of the phase trans-
fer decay, the refining stage, and the DDIM inversion w.r.t
the image quality and text fidelity. Results displayed in Tab.
2 show that missing any one of these ingredients results in
declined aesthetic score and CLIP similarity score, which is
basically in line with the qualitative results displayed in Fig.
8 and Fig. 10. Moreover, the absence of the refining stage
causes the most performance drop for these two metrics.

To quantitatively prove the hidden content perceptibility
control ability of our proposed asynchronous phase trans-
fer, we quantify hidden content visual prominence as the
structure similarity between input and output image pair,
for which we use DINO-ViT self-similarity score [33] as
the metric. As reported in Tab. 3, the I2I structure similar-
ity continuously grows with the increase of the async dis-
tance d, which tallies with the qualitative results of Fig. 11.
It is also worth noting that the increase of d does not lead
to drastic drop in CLIP Score, indicating that our proposed
asynchronous phase transfer promotes hidden content dis-
cernibility without noticeably sacrificing text fidelity.

For aesthetic assessment of the generated optical illusion
hidden pictures, we resort to user study for subjective evalu-

Contextual 
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4

2

10

8
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PAP

PTI

FBSDiff

SDEdit

ControlNet
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Figure 12. Average user ratings of different methods.

ation. Based on the unique visual characteristics of illusion
pictures, we invite 16 participants to score the generation
results of different methods on a scale of 1-10 from the fol-
lowing two perspectives: (i) contextual naturalness, i.e., to
what extent the reference image is naturally and reasonably
blended into the textual scene content; (ii) illusion balance,
i.e., well-balanced visual discernibility of the textual scene
content and the original hidden content, rather than visual
prominence of only one side. The average user ratings of
all the compared methods in Tab. 1 are reported in Fig. 12,
our method outscores other approaches by a large margin
in both two dimensions, subjectively indicating significant
advantage of our PTDiffusion in illusion picture synthesis.

5. Conclusion

This paper pioneers generating optical illusion hidden pic-
tures from the perspective of text-guided I2I translation, i.e.,
translating a reference image into an illusion picture that is
faithful to the text prompt in semantic content while man-
ifesting perceptible structural cues of the reference image.
To this end, we propose PTDiffusion, a concise and novel
method capable of synthesizing contextually harmonious
illusion pictures based on the off-the-shelf T2I diffusion
model. At the core of our method is a plug-and-play phase
transfer module that smoothly fuses the reference structural
information with the textual semantic information via pro-
gressive phase transfer between the latent diffusion features.
We further propose asynchronous phase transfer to enable
flexible control over hidden content discernibility. Though
dispensing with model training and fine-tuning, our method
shows significant advantages in hidden art synthesis.
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